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M E C H A N I S M  OF S U P E R D E E P  P E N E T R A T I O N  OF P A R T I C L E S  

I N T O  A M E T A L  T A R G E T  

S. P. Kise lev  and V.  P. Kise lev  UDC 534.2 

A physicomathematical model of superdeep penetration taking into account the strength prop- 
erties of the target is proposed. Based on this model, the problem of superdeep penetration of 
tungsten particles into a steel target has been solved for the first time. 

The phenomenon of superdeep penetration of microparticles into metal targets was found in early 1980s 
[1] and described in detail in experimental papers, which are briefly reviewed, for example, in [2]. There are 
several different hypotheses for the mechanism of this phenomenon [2-7], but a comprehensive description 
is still lacking, which makes the construction of a full mathematical  model of this phenomenon a timely 
problem. 

The essence of the phenomenon of superdeep penetrat ion of particles in a target is as follows. Let 
there be a metal target experiencing the action of a high-velocity flow of particles. Under certain conditions, 
a small fraction of particles (about 0.1~) penetrate to a great depth of hundreds and thousands of particle 
diameters. (Normally, the penetration depth is less than ten particle diameters.) Superdeep penetration is 
observed for particles whose diameter is d ~< 100 #m, the strength of the particles should be gTeater than 
the strength of ttm target, the particle velocity is Vp/> 103 m/sec, and the mean free-stream density of the 
particles is P2/~ 103 kg/m3- 

Tungsten particles were usually used in experiments, and the target material was steel. An analysis 
of the steel target after the action of a flux of particles shows [8] that  the channels behind the particles that 
penetrated to large depths l ~ 103d were completely collapsed. It is noted [8] that  three qualitatively different 
regions can be distinguished in the vicinity of the axis of each collapsed channel. In the first region r < 0.15d, 
the material has completely lost its crystalline structure and is mixed with the particle material (r is the 
distance from the channel centerline). In the second region 0.15d ~ r ~ (0.5-1.0)d, the target material has 
experienced an intense plastic deformation. In the third region r >~ (0.5-1.0)d, a weak plastic deformation of 
the material is observed. A physicomathematical model reflecting the above-described structure of material 
deformation is proposed in the present paper. 

It was assumed [2-4] that the target material flow can be described within the framework of the perfect 
liquid model. In this case, the d'Alembert paradox is valid for an attached flow, and the force acting on the 
particle from the side of the material equals zero. The penetration depth is equal to the product of the 
particle velocity and tim time t* of existence of the pressure p in the target, which is responsible for collapse 
of the channel behind the particle. Since the pressure is generated by deceleration of particles in the surface 
layer, t* is equal to the time of action of the particle flux on the target. A criterion of implementation of 
this regime is obtained from tim condition of appearance of a jet catching up with the particle and pushing 
it, which is formed upon channel collapsing. This criterion has the form p > psV2p tan 2 (~./2, where Ps is the 
density of the target material and c~. ~ 20 ~ is the critical angle of convergence of the jets at which a jet 

Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, 
Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 2, pp. 37- 
46, March-April, 2000. Original article submitted March 29, 1999. 

0021-8944/00/4102-0235 $25.00 (~) 2000 Kluwer Academic/Plenum Publishers 235 



catching up with the particle appears. 
It should be noted that  modeling of the target material by a perfect incompressible liquid is rather rough 

and contradicts the above-described s t ructure  of the channel behind the particle [8]. We show that  the loss of 
s trength of the material and its modeling by a liquid is possible only in the vicinity of the particle at distances 

not exceeding the particle diameter. In the remaining zone, the strains are small, and the material  experiences 
elastoplastic deformations. The strain rates near the particle are large (~0 "~ vp/d ~ 10r-10 s sec-1), and 
there is not enough time for heat removal from the slip surfaces, which leads to loss of s t rength of the material 
[9]. Denoting the mean distance between the planes where the deformation is localized as A, we write the 
condition of loss of strength as the inequality A2/ae > d/vp, where A2/ae is the time of t empera ture  relaxation 

due to thermal conductivity and ae is the thermal  diffusivity. The  magnitude of A should be of the order of the 
distance between the slip surfaces 0.1-1.0 #m. Substituting the values A _~ 1.4 #m, se = 2 .1 0  -5 m2/sec, and 
vp "* 103 m/sec into this inequality, we obtain the restriction on the particle diameter d <<. A2vp/ae ~ 100 #m, 

which agrees with a similar estimate in [2, 3]. 
Assuming the velocity field in the vicinity of the particle to be described by the solution of the equation 

for a perfect liquid, in a spherical coordinate  system we have vr = vp(1 - (a/r) 3) cos9 and ve = -vp(1 + 
(1/2)(a/r)  3) sin9 [10], where ~ is the angle between the radius-vector and the velocity vector of the particle. 
Using these formulas, we find that the strain rate ~ ,-~ Ore/Or decreases with increasing radius r as a power-law 
function ~/~o = (a/r) 4, where a = d/2 is the particle radius and ~0 "~ vp/d is the strain ra te  on the particle 
surface. It follows from this formula that  the strain rate for r -- 3a is ~ = t0-  10 -2 "~ 105-106 sec -1. For this 

strain rate, the loss of strength does not occur and the material retains its strength properties [11]. Thus, the 
radius of the zone of loss of strength r ~ 3a has the order of the radius of the region of strong deformation 
observed in channels behind the particles [8]. This allows one to assume that the loss of strength of the 
material in the course of particle penetra t ion occurs in the region of intense deformation r ~< 3a, and the 
material preserves its strength properties in the region of weak deformation r /> 3a. Despite the fact that  the 
mechanical properties of the material with loss of strength are similar to liquid properties, the material does 
not melt. The  loss of strength of the material ,  in contrast to melting, requires low energy losses. For example, 
the melting of steel in a cylinder o f  d iameter  0.3d and length 103d requires the energy E ~ 0.5 J, which is 
two orders of magnitude greater than the kinetic energy of a tungsten particle with velocity Vp = 103 m/sec, 
density pp = 2 �9 104 kg/m 3, and diameter d = 100 #m. Therefore, the loss of strength ra ther  than  melting of 
the material occurs near the channel axis r < 0.15d. Violation of the crystalline s t ructure  of the material is 
apparently related to a significant deformation, which arises due to viscous stresses and, according to Panin 
et al. [12], is accompanied by large local turnings. 

We obtain a criterion of superdeep penetra t ion taking into account the strength propert ies of the target 
material. We consider a solid spherical particle of diameter d moving in the target material along the x axis 
for the case where the material in the vicinity of the particle has lost strength. Let the particle have a velocity 

l Vp and a coordinate xp at the time t. During the time At  ~ d/vp, the particle shifts to the point Xp = Xp + d. 
Then a spherical cavity (pore) of radius a = d/2 appears at the point Xp. Under the action of the pressure 
p, this pore is filled by the target material. If the pore is closed during the time At, an a t tached flow around 
the particle is observed. This leads to a dramatic  decrease in the drag force and to superdeep penetrat ion 
of the particle. It does not seem possible to construct an analytical solution that  describes the flow of a 

viscoelastoplastic material in the vicinity of the particle. 
To find the pore-collapse time r ,  we consider the following model problem. We have a spherical cell of 

radius b with a pore of radius a = d/2 in the center of this cell. Th e  pore radius coincides with the particle 
radius (Fig. 1). We assume the material to be in a liquid state  in the layer a < r < rp and in a viscoplastic 
state in the layer rp < r < b. For a < r < rp, the liquid state  models the loss of s trength of the material, and 
the material preserves its strength propert ies in the layer rp < r < b. Based on the above-derived estimate 
for the radius of the zone of material softening, we choose the upper  boundary of the liquid layer rp = d. 

Since Andilevko et al. [8] do not give the upper boundary  of the weakly deformed region, we have to 
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Fig. 1 

involve additional considerations to determine b. Using the Hooke's law in a differential form Sij = 2#~ij and 
the above-derived estimate for the strain rate ~ ~ (vp/d)(a/r) 4, we evaluate the stresses arising at a point 
located at a distance r from the center of the particle: 

~ij ~'~ 2#~/~t--2~-~(a) 4 d ~  2~(a) 4. 
\ r I 'Up 

Here At = d/vp is tile characteristic time of deformation, Sij and eij are the deviators of stress and strain 
tensors, and # is the shear modulus. The stress at the boundary separating the elastic and plastic zones 
reaches the yield strength Sij ~ Y. Substituting this value into the formula for Sij, taking into account  tha t  
Y = 1 GPa  and # = 80 G P a  for steel, we estimate the radius of the plastic zone as r ,-, 3.56a. Assuming that  
the cell radius is equal to the plastic zone radius, we find b = 2d. 

If we apply the pressure p to the external boundary of tim cell, the pore collapses during a certain 
t ime r .  Ignoring the compressibility of the material, we write the equations that  describe the spherically 

symnmtric collapse of the pore [13]: 

{ OvT Ow ) OaT aT - ~o O~2vT 
ps\--~-+vr Or] = ~ r  + 2  r ' 0----~ - -0 ,  

/ ovT ~'r ) aT - or0 = 27]0 ~-~r for a < r < r p ,  (1) 

~r -- ~0 = Y + 2r/~ ~ r  r for r p < r < b .  

Here vT is tile velocity of motion of the material over the radius, ar and ao are the components of tile 
stress tensor in the spherical coordinate system (Fig. 1), r] and Y are the viscosity and yield s trength of the 

viscoplastic material, and r/o is the viscosity of the liquid. 
Integrating Eqs. (1) with respect to 7" with the boundary conditions 

aT(a)=O, aT(b)=-p, aT(rp--O)=ar(rp+O), "vT(rp--O)='vT(rp+O), 

we obtain 

2 
p = ~ Y l n  

5 + a - 1  

& 1 1 &2 1 1 
psaI ( (~-5~/3 ( a _  1)t/3) + T t ( a  1),i/3 a4 /3 ) )  + 3(C~o - 1)  2 /3  

4 5 (  ~ -7 ]o  _ _ ~ +  ~o ) (2) 
3 \ 5 + a - 1  a a - 1  ' 

a 3& b 3 b 3 r~ - a 3 

Vr -- 3 ( n o -  1)r 2' b 3 - a  ~ b ~ -  a~' b 3 - a 3'  
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where a0 = a(0),  a0 = a(0) = d/2 ,  b0 = b(0) = 2d, the dots denote derivatives wi th  respect to time, and ~ is 

the  fraction of the liquid mater ia l  in the cell. Assuming & = ~ = 0 and a = 1 in the  first equation of sys tem 

(2), we find the min imum pressure p ,  for which a complete collapse of the pore occurs: 

p ,  = (2/3)Y In (1/3). 

I t  follows from here that ,  if the material  does not lose its strength, we have ~ --* 0 and p,  ~ oc, and the  

pore  does not collapse at  all. A hollow channel is formed behind the particle, and  superdeep penet ra t ion  

becomes impossible. In our case, for steel with 5 ~ 0.11 and Y = 1.2 GPa  we obta in  the minimum pressure 
p ,  -~ 1.4 GPa.  From Eqs. (2), it follows tha t  the t ime of the complete collapse of  the pore T is the function 

r = ~(p, Ps, ao, r], Y, a0, 5). (3) 

[Since ~ >> 770, we ignore the dependence on ~70 in writing Eq. (3)]. Using the w-theorem, we can rewri te  

formula  (3) in the dimensionless form 

 =a0vT  a, y, (4) 

The  function g in Eq. (4) was found by numerical integration of system (2). 
I t  is noted above tha t  the material  should lose its s trength in the vicinity of  the particle in the case of  

superdeep penetrat ion,  and the pore arising behind the particle should collapse during the time A t  = d/vp.  
Hence,  the condition of superdeep penetrat ion can be writ ten in the form of the inequalities 

v <~ d/vp <~ A2/ee. (5) 

Using formula (4), we recast  the first inequality of system (5) as follows: 

p p v_/%02 
From comparison of formula (6) with the eriterion obtained in [2-4], it follows tha t  the quantity %0 in these 
papers  is a constant %0 --- tan  c~,, whereas in the proposed model %0 depends on the viscous and s t rength  

proper t ies  of the mater ia l  and on the cell parameters  [see formula (4)]. Figure 2 shows the collapse t ime  

7" versus the pressure p obta ined  by numerical integration of Eq. (2) for the following parameters:  Ps = 
7.85 - 103 k g / m  3, Y = 1.2 GPa ,  77 = 102 P a .  see, 7/o = 2 �9 10 -3 P a .  see, a0 = 50 #m,  and rp = 100 #m. The  

dashed curve describes the dependence of r on p for a liquid cell Y = 0, 7 /=  ~70 for b0 = 200 #m. The  solid 
curves 1-3 describe the dependences r (p)  with account of strength Y = 1.2 G P a  for initial radii of the cell 

b0 --- 300, 250, and 200 #m.  The  cell radius b0 has a weak effect on the collapse time. Taking into account 

the  mater ia l  s t rength Y r 0 leads to a significant increase in T for pressures p < 5 GPa.  

The  force acting on the particle from the target  can be determined f rom the formula proposed by 

Zlat in [14] 
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Ps ) Up -- Vl  F = -  H + p + - ~ ( V p - V t )  2 7rd2 
4 li)p VlI' (7) 

where vl  is the velocity of the target material. The  first term in brackets H ,  called the dynamic hardness, is 
caused by the work of hardness forces during material deformation. If the particle penetrates into the material  

P 

at tile length l, the work of these forces is A = / p s A E d V .  Tile volume of integration is a cylindrical channel 

behind the particle of radius d and length l; therefore, we have A ~ psAEzrd2 l .  The increase in the specific 
energy A E  is est imated from the formula 

/P-~8 1 1 vp d Y A E = 1 ai j~i j  d t  ~ - -  S i j~ i jA~ ~ - -  Y - -  - -  ~ - - ,  
Ps Ps d vp Ps 

where Si j  ~ Y ,  eij ~,o vp /d ,  /~t ~ d /vp ,  and crij = - P ~ i j  -+- Si j  is the stress tensor. 
Substi tuting A E  into the formula for work, we have A ~ 7rd2lY. Simultaneously, the work is found 

from the formula A = (Trd2/4)lH.  Equating these two expressions, we obtain H ~ 4Y, which is twice as 
large as the experimental ly determined hardness of steel H = 2 GPa  [14]. It follows from this reasoning that  
H ~ 0 if the material loses its strength in tile vicinity of the particle within r < d. 

The second and third terms in brackets in formula (7) are caused by formation of a cavity behind the 
particle. In this case, the pressure acting on the first hemisphere of the particle p + p~(Vp - vl )2 /2  multiplied 
by the mid-section area rrd2/4 determines the force acting on the p~t ic le .  If the regime of a t tached flow 
is observed, there is no cavity behind the particle, and this force is equal to zero. In the case of superdeep 
penetrat ion,  bo th  conditions (5) are fiflfiiled, and the right side in Eq. (7) vanishes. It is necessary to take into 
account, however, tha t  plastic deformations of the material with the strain rate ~ ~ ( v p / d ) ( a / r )  4 ~ l O - 2 v p / d  

occur outside the zone of material softening d < r < 2d. This decreases the work of the strength forces and, 
hence, the dynamic hardness H r ~ 10-2H by two orders of magnitude. Taking into account the s trength 
properties of the target  material leads to even smaller values of ~; therefore, the inequality H ~ ~< 1 0 - 2 H  is 
valid in this case for dynamic hardness. 

In the zone of material  softening d / 2  < 7" < d, tile yield strength is Y = 0, and the viscosity coincides 
with the melt viscosity r/0 = 2- 10 -3 Pa-  see. Correspondingly, the Reynolds number for the flow parameters  
around the particle vp ~ 103 m/see, d ~ 100 t tm,  and p~ = 8- 103 kg/m 3 is Re = p.s'vpd/'qo ~ 4 �9 105. Hence, 

viscous forces are manifested only in a thin boundary layer of thickness (f ~ 5 . 6 ~  ~ 5 . 6 d / ~  ~ 1 #m, 
where uo = r]o/p~ [10]. Apparently, the first region of intense deformation in the channel of d iameter  about  
0.3d observed experimental ly [8] is the boundary layer separating from the particle. Nevertheless, the diameter  
of this region is 30 #m for d ~ 100 #m, which is greater than the above estimate of 5 by an order of magnitude.  
This  difference may be caused by the fact that the strain rate and temperature  in the boundary layer decrease 
after its detachment from the particle. This leads to a dramatic increase in viscosity and the boundary-layer  
thickness in the channel behind the particle. Since 5 << d, the force of viscous drag of the particle can be 
determined using the self-similar Blasius solution. Multiplying the viscous stress tensor in the plate [10] by 
the particle-surface area, we obtain 

1 2 1.3 
F;  = 

As a result, the total  force acting on the particle in the superdeep penetrat ion regime is 

- ( g  r + 2.6 Ps(V--P --vl)2"~ 7rd2 vp - vl  
F p  V-G ) 4 Ivp (8) 

where Re = Ivp - v i i  d /uo .  
As noted above, only a very small fraction of incident particles (about 0.1%) penetrates to a large depth. 

This  may be caused by the screening effect of the incident particles by those particles that are accumulated 
in the surface layer of the target after a certain time t. If the volume concentration of particles rn 2 in the 
surface layer is smaller tha t  some critical value m,~, the particles falling on the surface can penetra te  into the 
metal. (The volume concentration of particles ra2 is the fraction of unit volume occupied by the particles.) 
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If m2 > m~, the incident particle collides with the particles in the surface layer and is stuck in it. Individual 
impulses generated by the incident particles are distributed among all particles of the layer. As a result, a 
dense layer of particles acts on the target with the mean pressure [2] PL = 0.3pLvnc, where c is the mean 
velocity of sound in the target and PL and VL are the mean particle density and velocity in the cloud. Hence, 
the particles penetrate into the target under the condition 

(m2> < m~, (9) 

lp 

where (m2> -- I m2 dx/Ip is the mean volume concentration of particles in the surface layer of thickness lp 
, I  

0 
(lp is the velocity-relaxation length during particle penetration into the material). Let us derive a formula for 
lp. Substituting the force Fp from formula (7) into the equation of particle motion and ignoring the pressure 
and dynamic hardness, we obtain the equation of motion dvp/dt = -vp/Ip, which incorporates the velocity- 
relaxation length l~ = 4ppd/ps. The value of m~ was chosen by matching the numerical and experimental 
results in terms of the number of penetrated particles rn~ = 0.25. 

We formulate the equations that describe the process of superdeep penetration of the particles. As 
noted above, the particle strength is always gTeater than the target-material strength; therefore, the parti- 
cles can be considered as incompressible spheres of diameter d. The volume concentration of the particles 
penetrating into the target is low (m2 << 1), and tim collisions between the particles can be ignored. To 
describe the motion of the particles and the target material, we use the continuum-discrete model developed 
previously for a gas-particle mixture [13]. In this model, the particles are described by the collision-free 
kinetic equation 

Of Of  0 / F p  \ 7rd3 / 7rd3 / V p f  
dVv, (lO) 

where f : f( t ,  v~, x) is a single-particle distribution function, dVv = dvp~ dvpv dvpz is tile infinitesimal volume 
in the space of particle velocities, mp = 7rd3pp/6 is the particle mass, and (Vp) is the mean velocity of the 
particles. Tile force Fp is found from formulas (7) and (8) and depends on the regime of particle motion. 

System (10) should be supplemented by equations for the target material. Using tensor notation, we 
write them in the coordinate system x i with the basis vectors ei: 

Ops dvu dE = a" .z-.. + (~, 
Ot + ViPsVli -= O, Ps - - ~  = V ja i j  -- Fi, Ps --~ z3~z2 

d 0 1 
d-t = 0-~ + VliVi '  o'ij --- -P~ij  q- ~ij, gij --~ "~ (~iVlj  -1- VjVl i ) ,  

1~ 6 { 2peij, (3/2)SijSij < y 2 ,  

= - 5 - k k  = + (3/2)s js   = y 2 ,  ( 1 1 )  

Sij = dSij 1 dt - CdikSjk -- ~ ally -~ ~(~7iVlj -- ~rjVli), P = Pcold + Ptherm,  

Pcold=K\(PSps 0 _ 1 ) ,  E=Ecold+Etherm,  Ecold= 2pOs \ pO s ] + #pse~je~j, 

S~j 
ei~ = 2# Ptherm = FpsEtherm, i, j = 1, 2, 3. 

Here eij, Sij, gij, aij, and wij are the tensors of the deviator of the stress and strain rates, strain rate, stress, 
and turning (summation is performed over repeated indices), E, Zcotd, and Ether m are the specific internal 
energy and its cold and thermal components, p, Pcold, and Ptherm are the pressure and its cold and thermal 
components, and K and/z are the volume compression and shear moduli. The material is described by the 
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Hooke's law in the elastic zone and by the Prandtl-Reiss relations in the elastoplastic zone. The force F of 
interaction between the particles and material  and the energy-dissipation rate ~) are found from the formulas 

F =  S FpfdV,,, Q =  i FP(vi - vp)f dl4, (12) 

where F = Fi.ei. 
Using this model, we solved a one-dimensional problem of superdeep penetration of particles into the 

target. The  target  was a nmterial layer of thickness h ~ with a particle flux incoming from the left. In the 
one-dimensional case, system (5), (7), (10)-(12) becomes much simpler and has the form oc 

7rd 3 7rd 3 f Of Of 0 ( Fp f )  =0, -~ pp, rn,, 6 

--O0 

Ops 0 dvl Oc~l dE d 0 0 
cot +~xx p~vl=O'  P's d---t-- O~ F, p s - - ~ = a l ~ l + O ,  dt - -ot+Vto--~,  

a~ = S~ - p ,  $2 = $3, Sj + s2 + S3 = O, 

S~ = 2#~i, 

5 Z < r~ 
i = l  

~ i :  3 3 

z_ . ,  , ,  , 5 ( s  >~ Y <  
i=1 i=1 (13) 

K (  ps - 1 )  E =  Ecold H- Etherm, Ecold = 2@s0 (A~(1 - ~)2-t-3/t(e~) 2) P = Pcold + Ptherm, Pcold = \ps  0 , 

S1 O v l  ~2 = ~3 = O, 
e~ = ~, Ptherm = FpsEtherm, ~1 = OX ' 

Ps "2 7rd2 Vp -  Vl 
- ( Z + P + T ( v " - v l ) )  4 Iv. v l' 

Fp = _ ( H ,  + 2 6 Ps(Vp - Vl)2~ Trd2 Vp - Vl • Ivp - vl[ ~ 1 
t, " v l ~  ] 4 Ivp Wl'---]' a ' - -2"~ -~ - -d  ~ 7" 

The first relation for the force Fp is used if the condition of superdeep penetration w/A 2 <~ Ivp i vl lid <<. l i t  
is not satisfied and at the stage where the penetrat ion depth of the particles in the target is equal to the 
diameter d. If the strain rate g = [Vp - Vl [/d satisfies the inequality ~ > w/A 2, then H '  should be substituted 

for H in the first relation for Fp. 
System (13) is valid in the region XL(t) < z < Xl{(t) whose left xL(t) and right xR(t) boundaries 

change with time. As long as inequality (9) is satisfied, the particles penetrate into the target. In this case, 
the condition of zero stress crl (xL(t)) = 0 and the tim'{ of particles 

j(xL(t)) = p L V L  

are prescribed at the left boundary xL(t). The free-stream velocity VL and the mean density of particles PL 
are found from the formulas 

VL = vOL exp (--oqt/70), PL = pOL exp (o~2t/To) , (14) 

which were obtained by Andilevko et  al. [i5] by approximation of numerical results on powder acceleration 
by explosive energy. When inequality (9) becomes invalid, the incident particles are screened, and we set 
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j (xL( t ) )  = 0 and al (xL( t ) )  = --0.3pLVLC, where PL and VL are found from formulas (14), at tlle boundary 
xL(t).  The condition of zero stress 61(xR(t)) = 0 is imposed at the right boundary. The target is assumed 
to be ratlmr "thick" and the particles do not  go outside the right boundary;  therefore, no conditions are 
imposed on them at the right boundary. At the t ime t = 0, the velocity vl, pressure p, and stresses ai are 
equal to zero, and the density is Ps = pO. 

System (13) was solved by tile numerical method developed previously by the authors for calculation 
of gas-particle mixture  flows and described in detail in [16]. The equations that describe the behavior of the 
target material were solved in Eulerian moving coordinates using the "cross" scheme [17]. The collision-free 
kinetic equation for tile particles was solved in Lagrangian coordinates. The  cloud of particles at the entrance 
to the material was divided into cells in such a way that  the particles in this cell had equal velocities. In this 
case, the equations of motion of the cell dx /d t  = Vp and dvp/dt = Fp/mp coincided with the characteristics of 
the kinetic equation. Ttm material velocity, pressure, and density in particle cells were found by interpolation. 
The target material  was steel with tile parameters  p0 = 7.85 �9 103 k g /m  3, # = 80 GPa, K = 160 GPa, Y = 
1 GPa, and H = 2 GPa.  The tungsten particles had a diameter d = 100 tan and density pp = 19.8.103 kg/m 3. 
The dynamic hardness and viscosity of the material  with the loss of s trength were H p = 2 �9 10 -3 GPa and 
7J0 = 10 -3 Pa -  sec. The  parameters entering Eq. (14) were chosen similar to those in [2, 15]: v ~ = 2 km/sec, 
pO = 3 �9 103 kg /m  3, a l  = 1.61, a2 = 0.92, and To -- 70 #sec, where 7o is the time of loading of tim target 

by tim particle flux. The  coordinates of the target  boundaries at the initial t ime t = 0 were xL(O) = 0 and 

xit(O) = 0.3 m. 
Figure 3 shows the velocity of three part icle cells (in what follows, we will call them simply particles for 

brevity) versus the t ime t. The particles are incident onto the left boundary  of the target at the times tl = 0, 
t2 = 0.19 ltsec, and t3 = 0.38 #sec. During the t ime At  ~ 0.1 psec, the particles are strongly decelerated near 
the target boundary  until they penetrate deeply into the target and the condition of superdeep penetration 
is fulfilled. At the second stage, the regime of superdeep penetrat ion is attained, the force acting on the 
particles is small, and their velocity is slow. At the third stage, the condition of superdeep penetration (5) 
is no longer valid, the particles are drastically decelerated again, and their velocity decreases to the material 
velocity. The dashed curve in Fig. 3 shows the velocity of the left boundary  of the target. 

Figure 4 shows the pressure distributions in the target p(x) for several times t from the beginning 
of penetrat ion of the particles into the target  with an interval At = 20 #sec. It  follows from Fig. 3 that 
the termination of superdeep penetration is related to particle deceleration to the velocity vp ~ 750 m/sec 

where condition (5) is no longer ~alid. As follows from Fig. 4, the mean  pressure acting in the material at 
the time t ~ 60 #sec is still rather high (p ~ 8 GPa) .  Hence, the assumption of Al'tshuler et al. [2, 3] and 
Andilevko [4] that  the t ime of superdeep pene t ra t ion  of particles equals the time of action of high pressure in 
the material for thick targets is incorrect. Th e  later  the particles enter the target, the less they are decelerated 
in the boundary zone. These particles overtake the particles that  entered the target earlier and penetrate to 
great distances (see Fig. 3). The reason is tha t  the first particles s tar t  to penetrate  into the target when the 
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pressure there equals zero, and they spend more elmrgy for deceleration and generation of high pressure than 
the particles that entered the target at later times. This effect is the reason for a nonmonotonic distribution 
of the particle concentration depending on the penetration depth. 

Figure 5 shows the dependence of the averaged volume concentration of particles (m2) on the x coor- 
dinate at the time t = 100 #sec. [The calculated dependence m2(x) had both regular and fluctuating compo- 
nents, the latter being related to the initial numerical discretization of the cloud into cells. As the particles 
penetrated into tim material, the distance between them increased and the discreteness increased too. Fluctu- 

ations were eliminated by averaging the calculated value of m2(x) using the formula (m2} = ~-~ m2(x) dx; 

Al 
the value of Al was chosen empirically and was equal to 25d.] It follows from Fig. 5 that the particles pen- 
etrate to a m~ximum depth of the order of 500d. The dependence {rn2}(x) is nonmonotonic and has two 
maxima. The first maximum is located near the left boundary of the target and corresponds to the particles 
that spent their kinetic energy for pressure generation in the target. The second local maximum at x ~ 6 cm 
corresponds to the particles that enter the target at later times when there is a rather high pressure p in it. 
In this case, after penetration to the diameter d, the particles started to move in the regime of superdeep 
penetration, slowly losing their velocity. Note that the dependence rn2(x) for tungsten particles obtained 
in the experiment I81 is also nonmonotonic and has two maxima: near the boundary and at a large depth 
(x ~ 4.6 era). 

Thus, a mathematical model used to solve the problem of superdeep penetration has been developed 
in the present paper. The calculation results for the penetration depth and distribution of the volume 
concentration of particles in the target are in qualitative agreement with experimental data. 
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